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A saturation theorem and an asymptotic theorem are proved for an optimal,
discrete, positive algebraic polynomial operator. The operator is based on the
Gauss-Legendre quadrature formula.

1. INTRODUCTION

Let {P,..} be the sequence of Legendre polynomials, orthogonal on [-1, 1],
and normalized so that Pk(l) = 1. Assume k = 2n is even and denote by
(X2" and (\2"-1 the two smallest positive zeros of P 2n and by R" the polynomial
of degree 4n - 8 defined by

where c" > 0 is chosen so that

(1.1)

.1I Rn(t) dt = 1,
• -1

II = 2, 3..... (1.2)

The polynomial Rn generates the positive linear polynomial operator

. 1 .1 ( t - X)
Ln(J, x) = 2: -'-1 jet) Rn -2- dt, -1,s;;x~1. (1.3)

This is essentially the operator studied by DeVore in [3, p. 176]. Also note
[I, 10]. Let -I < X1,k < ... < Xk,k < 1 be the zeros of Pk(x) and A.ok '
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/' cc I, ... , k, be the associated Cotes number. [n view of the Gauss quadrature
formula

,j I,

j P(t) dt = I \,i..p(x".d.
'"'-1 v=1

( 1.4)

valid for all polynomials of degree ~2k - I. a natural discretization of (1.3)
is the positive linear polynomial operator

( 1.5)

This method of discretizing (1.3) is similar to an approach taken by
Bojanic and Shisha [2] for discretizing positive trigonometric convolution
operators, See also [4. 7, 8]. The purpose of this note is to consider saturation
and an asymptotic formula for (1.5).

2. DEGREE OF ApPROXIMATIOl\

THEORE\! I. Let et(x) = X', i = 0, 1, 2, alld, for °< S < I, let fa

[-8, 8). The {KnJ is locally saturated on fa with order 11-2, trivial class
T(K,,) = {I: I is linear on faJ and saturation class S(K,J = :f: l' E Lip I on 1,,:.

Proof The proof is based on the fact that

• I

J t 4 Rn(t) dt = O(n-4 ),
-1

This is proved in [3, p, 177]. Let x E fa. Using (1.4)

I r1
( t - ...c

= 2: "-I R n -2-) dt.

Using (1.2) and (2,1)

I - Kn(eo ,x)! = I.e Rn(t) dt - f;I~X:;2~ Rit) dt I
C Rn(t) dt + r- IU

-
X

)/2) Rn(t) dt"(I-x).'2 '-1

(1 I-«I-a) /2)

~ .1(1-6) 2 Rn(t) dt + -1 Rit) dt

~ C1(S) MII-4,

(2, I)

(2,2)
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where C1(S) and M are constants. Next

(
' 1 2n (x" On - X))

- X I - 2" I '\.2nC'v.2n - x) R n .• 2
.-1 '

I 2n ('xv.2n - X)
- 2" I \,.2n(X".2n - X) Rn --2-,1,=1

r
(l-Xl/2

= x(l - Kn(eo , X» - 2 tR 1I(t) dt.
'-«1-<-") '2)

Since tR,,(t) is an odd function of t,

~ C2(S) ( tJR"Ct) dt
• --1

for some constants CiS) and M. It follows that

295

(2.3)

Using (1.4) and the fact that degree of (tp_pX)2 R,,(t - x) is 4/1 - 6, we
obtain

(2.4)
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Using (1.1) and (1.4),
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.. 1 2't

I t 2R,,(t) cit I /\.,2"X~,2nRn(.\"v.2n)
... -1 ~',=-l

where '\2" and '\2>1-1 are the Cotes numbers associated with .\2" and \:2/1 --1 '

respectively. There are positive constants C~, C~ and a positive integer N
such that 11> N implies

i = 0, I. (2.6)

This follows from [3, Theorem 1.12]. See also [3, p. 177]. Using (1.2), (2.5)
and (2.6), we obtain positive constants C5 and C6 such that n ::: N implies

c., _- j.L 2R ( ) d / C6
~2 -" tnt t """ -. '

11 "-I n-
(2.7)

Using (2.1), (2.4) and (2,7) we obtain positive constants C7(b), C8(o) and a
positive integer N(b) such that for n ~ N(b) and x E 10 ,

CiS), K « . 2 ) , Cs(!)
~-.>- .:.,-- Tl t - .\) ,x ...:...::: ~-2- .

n- n

Finally

I .1 - I-\'
K,,«(t - X)4, x) =, l' I (t - .d R" (-')-'-) cit

-, -1 - -

and it follows from (2.\) that

(2.8)

(2.9)

Theorem I now follows from (2.2), (2.3), (2.8), (2.9), and Theorem 5.3.
Lemma 5.2 and Theorem 5.5 of [3].

THEOREl\1 2. If f is bounded on [-I, I] and j" exists at the fixed point
x E ( - I. \), then

where

R1(t) = J(t) - fIx) - 1'(I)(t - x)

for -I < I < I and T£2 1(X) = K,,(t - X)2, x).
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Proof Let r > 1 and T$,21(x) = KnCCt - X)4, x). Since f is bounded on
[-1, 1], there exists a positive number T = T(r, f) such that

11 = 2, 3,.... (2.10)

Choose 1 < r' < 2 such that r-1 + (r')-1 = 1. Using (2.8) and (2.9), we
obtain a positive constant, L, such that

(2.11 )

Theorem 2 fol1ows from (2.10), (2.11) and Theorem 2 of [5].

Remarks. The fol1owing considerations show that Kn can be used to
approximate on an arbitrary interval/ = [a, b).

Let f E qa, b] and let g be the linear transformation which maps / onto
/6 = [-8, 8]. Let y E I and g( Y) E /6' According to the theorem of Shisha
and Mond [6],

; Kn(fo g-l(t), g(y» - f(y)/ = i Kn(fc g-I(t), x) -fe g-I(X)1

~ (I --;- KnCeo) f6) Ir(fe g-l, (311)

where w(f e g-l, .) is the modulus of continuity of f 0 g-l on [-I, I] and

(3 ~ I K « .)2 )1'1/2 -- D( -1)n - ,i n t -.\ ", f6 -- 11 •
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