A Note on the Degree of Approximation with an Optimal, Discrete Polynomial

J. J. SWETITS

Mathematical and Computing Sciences Department, Old Dominion University, Norfolk, Virginia 23508

AND

B. WOOD

Mathematics Department, University of Arizona, Tucson, Arizona 85721

Communicated by Oved Shisha

Received May 1, 1978

A saturation theorem and an asymptotic theorem are proved for an optimal, discrete, positive algebraic polynomial operator. The operator is based on the Gauss-Legendre quadrature formula.

1. INTRODUCTION

Let $\{P_k\}$ be the sequence of Legendre polynomials, orthogonal on [-1, 1], and normalized so that $P_k(1) = 1$. Assume k = 2n is even and denote by α_{2n} and α_{2n-1} the two smallest positive zeros of P_{2n} and by R_n the polynomial of degree 4n - 8 defined by

$$R_n(x) = c_n \left(\frac{P_{2n}^{(r)}}{(x^2 - \alpha_{2n}^2)(x^2 - \alpha_{2n-1}^2)} \right)^2, \tag{1.1}$$

where $c_n > 0$ is chosen so that

$$\int_{-1}^{1} R_n(t) dt = 1, \qquad n = 2, 3, \dots$$
 (1.2)

The polynomial R_n generates the positive linear polynomial operator

$$L_n(f, x) = \frac{1}{2} \int_{-1}^{1} f(t) R_n\left(\frac{t-x}{2}\right) dt, \quad -1 \le x \le 1.$$
 (1.3)

This is essentially the operator studied by DeVore in [3, p. 176]. Also note [1, 10]. Let $-1 < x_{1,k} < \cdots < x_{k,k} < 1$ be the zeros of $P_k(x)$ and $\lambda_{\nu,k}$,

v = 1, ..., k, be the associated Cotes number. In view of the Gauss quadrature formula

$$\int_{-1}^{1} P(t) dt = \sum_{\nu=1}^{k} \lambda_{\nu,k} P(x_{\nu,k}).$$
(1.4)

valid for all polynomials of degree $\leq 2k - 1$, a natural discretization of (1.3) is the positive linear polynomial operator

$$K_n(f,x) = \frac{1}{2} \sum_{\nu=1}^{2n} \lambda_{\nu,2n} f(x_{\nu,2n}) R_n\left(\frac{x_{\nu,2n} - x}{2}\right).$$
(1.5)

This method of discretizing (1.3) is similar to an approach taken by Bojanic and Shisha [2] for discretizing positive trigonometric convolution operators. See also [4, 7, 8]. The purpose of this note is to consider saturation and an asymptotic formula for (1.5).

2. DEGREE OF APPROXIMATION

THEOREM 1. Let $e_i(x) = x^i$, i = 0, 1, 2, and, for $0 < \delta < 1$, let $I_{\delta} = [-\delta, \delta]$. The $\{K_n\}$ is locally saturated on I_{δ} with order n^{-2} , trivial class $T(K_n) = \{l: l \text{ is linear on } I_{\delta}\}$ and saturation class $S(K_n) = \{f: f' \in \text{Lip } 1 \text{ on } I_{\delta}\}$.

Proof. The proof is based on the fact that

$$\int_{-1}^{1} t^4 R_n(t) \, dt = O(n^{-4}). \tag{2.1}$$

This is proved in [3, p. 177]. Let $x \in I_{\delta}$. Using (1.4)

$$K_n(e_0, x) = \frac{1}{2} \sum_{\nu=1}^{2n} \lambda_{\nu,2n} R_n\left(\frac{x_{\nu,2n} - x}{2}\right)$$
$$= \frac{1}{2} \int_{-1}^{1} R_n\left(\frac{t - x}{2}\right) dt.$$

Using (1.2) and (2.1)

$$1 - K_{n}(e_{0}, x)! = \left| \int_{-1}^{1} R_{n}(t) dt - \int_{-(1-x)/2}^{(1-x)/2} R_{n}(t) dt \right|$$

$$= \int_{(1-x)/2}^{1} R_{n}(t) dt + \int_{-1}^{-((1-x)/2)} R_{n}(t) dt$$

$$\leqslant \int_{(1-\delta)/2}^{1} R_{n}(t) dt + \int_{-1}^{-((1-\delta)/2)} R_{n}(t) dt$$

$$\leqslant C_{1}(\delta) Mn^{-4}, \qquad (2.2)$$

294

where $C_1(\delta)$ and M are constants. Next

$$\begin{aligned} x - K_n(e_1, x) &= x - \frac{1}{2} \sum_{\nu=1}^{2^n} \lambda_{\nu,2n} R_n \left(\frac{x_{\nu,2n} - x}{2} \right) \\ &- x \left(1 - \frac{1}{2} \sum_{\nu=1}^{2^n} \lambda_{\nu,2n} (x_{\nu,2n} - x) R_n \left(\frac{x_{\nu,2n} - x}{2} \right) \right) \\ &- \frac{1}{2} \sum_{\nu=1}^{2^n} \lambda_{\nu,2n} (x_{\nu,2n} - x) R_n \left(\frac{x_{\nu,2n} - x}{2} \right) \\ &= x (1 - K_n(e_0, x)) - \frac{1}{2} \int_{-1}^{1} (t - x) R_n \left(\frac{t - x}{2} \right) dt \\ &= x (1 - K_n(e_0, x)) - 2 \int_{-((1 + x)^{-1})}^{(1 - x)/2} t R_n(t) dt. \end{aligned}$$

Since $tR_n(t)$ is an odd function of t,

$$\left| \int_{-((1+x)/2}^{(1-x)/2} tR_n(t) dt \right| \leq \int_{(1-x!)/2}^{(1+|x|)/2} tR_n(t) dt$$
$$\leq \int_{(1-\delta)/2}^{1} tR_n(t) dt$$
$$\leq C_2(\delta) \int_{-1}^{1} t^4 R_n(t) dt$$
$$\leq C_2(\delta) Mn^{-4},$$

for some constants $C_2(\delta)$ and M. It follows that

$$x - K_n(e_1, x) = O(n^{-4}).$$
 (2.3)

Using (1.4) and the fact that degree of $(tp-px)^2 R_n(t-x)$ is 4n-6, we obtain

$$K_{n}((t-x)^{2}, x) = \frac{1}{2} \int_{-1}^{1} (t-x)^{2} R_{n} \left(\frac{t-x}{2}\right) dt$$

$$= 4 \left[\int_{-1}^{1} t^{2} R_{n}(t) dt - \left(\int_{-1}^{((1+x)-2)} R_{n}(t) dt + \int_{(1-x)-2}^{1} t^{2} R_{n}(t) dt \right) \right].$$
(2.4)

Using (1.1) and (1.4),

$$\int_{-1}^{1} t^2 R_n(t) dt = \sum_{\nu=1}^{2n} \lambda_{\nu,2n} x_{\nu,2n}^2 R_n(x_{\nu,2n}) = 2[\lambda_{2n} x_{2n}^2 R_n(x_{2n}) + \lambda_{2n-1} x_{2n-1}^2 R_n(x_{2n-1})], \qquad (2.5)$$

where λ_{2n} and λ_{2n-1} are the Cotes numbers associated with x_{2n} and x_{2n-1} , respectively. There are positive constants C_3 , C_4 and a positive integer N such that n > N implies

$$\frac{C_3}{n} \leq x_{2n-i} \leq \frac{C_4}{n}, \quad i = 0, 1.$$
 (2.6)

This follows from [3, Theorem 1.12]. See also [3, p. 177]. Using (1.2), (2.5) and (2.6), we obtain positive constants C_5 and C_6 such that n > N implies

$$\frac{C_5}{n^2} \leq \int_{-1}^{1} t^2 R_n(t) \, dt \leq \frac{C_6}{n^2} \,. \tag{2.7}$$

Using (2.1), (2.4) and (2.7) we obtain positive constants $C_7(\delta)$, $C_8(\delta)$ and a positive integer $N(\delta)$ such that for $n \ge N(\delta)$ and $x \in I_{\delta}$,

$$\frac{C_7(\delta)}{n^2} \leq K_n((t-x)^2, x) \leq \frac{C_8(\delta)}{n^2}.$$
(2.8)

Finally

$$K_n((t-x)^4, x) = \frac{1}{2} \int_{-1}^1 (t-x)^4 R_n\left(\frac{t-x}{2}\right) dt$$

and it follows from (2.1) that

$$K_n((t-x)^4, x) = O(n^{-4}).$$
 (2.9)

Theorem 1 now follows from (2.2), (2.3), (2.8), (2.9), and Theorem 5.3, Lemma 5.2 and Theorem 5.5 of [3].

THEOREM 2. If f is bounded on [-1, 1] and f'' exists at the fixed point $x \in (-1, 1)$, then

$$\lim_{n\to\infty}\frac{K_n(R_1,x)}{T_n^{[2]}(x)}=\frac{f''(x)}{2}.$$

where

$$R_1(t) = f(t) - f(x) - f'(t)(t - x)$$

for -1 < t < 1 and $T_n^{[2]}(x) = K_n((t-x)^2, x)$.

Proof. Let r > 1 and $T_n^{[2]}(x) = K_n((t-x)^4, x)$. Since f is bounded on [-1, 1], there exists a positive number T = T(r, f) such that

$$K_n(|f|^r, x) \leq TK_n(e_0, x) \leq T, \quad n = 2, 3,$$
 (2.10)

Choose 1 < r' < 2 such that $r^{-1} + (r')^{-1} = 1$. Using (2.8) and (2.9), we obtain a positive constant, L, such that

$$0 \leqslant \frac{(T_n^{[4]}(x))^{1/r'}}{T_n^{[2]}(x)} \leqslant \frac{Ln^2}{n^{4/r'}}.$$
(2.11)

Theorem 2 follows from (2.10), (2.11) and Theorem 2 of [5].

Remarks. The following considerations show that K_n can be used to approximate on an arbitrary interval I = [a, b].

Let $f \in C[a, b]$ and let g be the linear transformation which maps I onto $I_{\delta} = [-\delta, \delta]$. Let $y \in I$ and $g(y) \in I_{\delta}$. According to the theorem of Shisha and Mond [6],

$$= K_n(f \circ g^{-1}(t), g(y)) - f(y)_{|} = |K_n(f \circ g^{-1}(t), x) - f \circ g^{-1}(x)_{|}$$

$$\leq (1 + K_n(e_0)_{I_{\delta}}) w(f \circ g^{-1}, \beta n)$$

$$+ f \circ g^{-1}|_{I_{\delta}} \cdot K_n(e_0) - 1_{I_{\delta}},$$

where $w(f \circ g^{-1}, \cdot)$ is the modulus of continuity of $f \circ g^{-1}$ on [-1, 1] and

$$\beta_n = |K_n((t-x)^2,.)|_{I_{\delta}}^{1/2} = O(n^{-1}).$$

ACKNOWLEDGMENT

The authors are grateful to the referee for several helpful suggestions.

REFERENCES

- 1. R. BOJANIC, A note on the degree of approximation to continuous functions, L'Enseignment Math. 15 (1969), 43-51.
- 2. R. BOJANIC AND O. SHISHA, Approximation of continuous periodic functions by discrete positive linear operators, J. Approximation Theory 11 (1974), 231-235.
- 3. R. DEVORE, "The Approximation of Continuous Functions by positive Linear Operators, Lecture Notes in Mathematics No. 293, Springer-Verlag, New York, 1972.
- 4. R. DEVORE AND J. SZABADOS, Saturation theorems for discretized linear operators, Anal. Math. 1 (1975), 81-89.
- M. MüLLER, On asymptotic approximation theorems for sequences of linear positive operators, in "Approximation Theory" (A. Talbot, Ed.), pp. 315–320, Academic Press, New York, 1970.

- 6. O. SHISHA AND B. MOND, The degree of convergence of linear positive operators, Proc. Nat. Acad. Sci U.S.A. 60 (1968), 1196–1200.
- 7. J. J. SWETITS AND B. WOOD. Approximation by discrete operators, J. Approximation Theory 24 (1978), 310-323.
- 8. J. SZABADOS, Convergence and saturation problems of discrete linear operators, *in* "Linear Operators and Approximation" (P. L. Butzer and B. Sz.-Nagy, Eds.), Vol. 2, pp. 405–419, Birkhäuser, Basel, 1975.
- 9. G. SZEGÖ, "Orthogonal Polynomials," Amer. Math. Soc. Colloq. Publ., Vol. 23, *Amer. Math. Soc.*, New York, 1959.
- 10. B. WOOD, Degree of L_p approximation by certain positive convolution operators, J. Approximation Theory 23 (1978), 354-363.